Logarithmic Function MCQ Quiz - Objective Question with Answer for Logarithmic Function - Download Free PDF

Last updated on Apr 30, 2025

Latest Logarithmic Function MCQ Objective Questions

Logarithmic Function Question 1:

If t = e2x and y = = loge t2, then  is :

  1. 0
  2. 4t

Answer (Detailed Solution Below)

Option 1 : 0

Logarithmic Function Question 1 Detailed Solution

Concept:

  • We are given:
    • t = e2x
    • y = loge(t²) = 2 loge(t)
  • We need to find the second derivative d²y/dx².
  • This requires the chain rule and product rule of differentiation.

 

Calculation:

Step 1: Express y in terms of x

y = 2 log(t), where t = e2x

Since log(t) = log(e2x) = 2x

⇒ y = 2 × 2x = 4x

First derivative:

dy/dx = d/dx (4x) = 4

Second derivative:

d²y/dx² = d/dx (4) = 0

∴ The correct answer is: 0.

Logarithmic Function Question 2:

If , then find the value of logx xyzwu.

  1. 32

Answer (Detailed Solution Below)

Option 1 :

Logarithmic Function Question 2 Detailed Solution

Let, 

Therefore, 

Therefore, 

Logarithmic Function Question 3:

If , then

Answer (Detailed Solution Below)

Option 4 :

Logarithmic Function Question 3 Detailed Solution

Calculation

Given equation is

applying componendo and dividendo gives,

Differentiating with respect to gives,

Hence option 4 is correct

Logarithmic Function Question 4:

If y = logn x, where logn means loge loge... (repeated n times), then

x log x log2 x log3 x ..... logn-1 x logn x  is equal to

  1. log x
  2. x
  3. 1
  4. logn x

Answer (Detailed Solution Below)

Option 4 : logn x

Logarithmic Function Question 4 Detailed Solution

Calculation

y = logn x

x log x log2 x log3 x ..... logn-1 x logn x  = logn x

Hence option 4 is correct 

Logarithmic Function Question 5:

If y is a function of x and log(x + y) = 2xy, then the value of y'(0) is

  1. 1
  2. -1
  3. 2
  4. 0

Answer (Detailed Solution Below)

Option 1 : 1

Logarithmic Function Question 5 Detailed Solution

Answer : 1

Solution :

log(x + y) = 2xy

Differentiating w.r.t. x, we get

For x = 0, log(y) = 0

⇒ y = 1

Top Logarithmic Function MCQ Objective Questions

Find derivative of (x)log x with respect to x

  1. ​None of these

Answer (Detailed Solution Below)

Option 2 :

Logarithmic Function Question 6 Detailed Solution

Download Solution PDF

Concept:

Formula:

log mn = n log m

Calculation:

Let y = xlog x

Taking log both sides, we get

⇒ log y = xlog x

⇒ log y = log x log  x            (∵ log mn = n log m)

Differentiating with respect to x, we get

⇒ 

⇒ 

⇒ 

⇒ 

If y = logx, then  is equal to:

Answer (Detailed Solution Below)

Option 3 :

Logarithmic Function Question 7 Detailed Solution

Download Solution PDF

Concept:

Product rule of differentiation:

Let h(x) = f(x)g(x), then h'(x) = f'(x)g(x) + f(x)g'(x)

Calculation:

Given, y = logx

⇒ y = 

⇒ y log y = log x

By differentiating both sides w.r.t. x, we get

⇒ 

∴ 

log 2 =  x, log 3 = y, then log 6 is

  1. x - y
  2. xy
  3. x + y
  4. x/y

Answer (Detailed Solution Below)

Option 3 : x + y

Logarithmic Function Question 8 Detailed Solution

Download Solution PDF

Given:

log 2 =  x, log 3 = y

Concept:

Properties of Logarithms:

Calculation:

log 6 = log (2 x 3)

From 2nd property of logarithms

log 6 = log 2 + log 3

log 6 = x + y

If , then what is \(\rm \frac{dy}{dx}\) equal to?

  1. None of these

Answer (Detailed Solution Below)

Option 3 :

Logarithmic Function Question 9 Detailed Solution

Download Solution PDF

Concept:

Suppose that we have two functions f(x) and g(x) and they are both differentiable.

  • Chain Rule: 
  • Product Rule: 
  • log ab = b log a 


Calculation:-  

 , where a is constant 

Taking log both sides, we get

⇒ 

⇒ log xm + log yn = log x + log y + log am+n

⇒ m log x + n log y = log x + log y + (m + n) log a 

Differentiate both sides w.r.t  x, we get

⇒    [∵   ]  

⇒  

⇒   . 

The correct option is 3. 

If f(x) = log √x, find derivative of f(x)

Answer (Detailed Solution Below)

Option 1 :

Logarithmic Function Question 10 Detailed Solution

Download Solution PDF

Concept:

Chain rule: 

If y = log x, then f'(x) = 1/x

And if y = √x, then f'(x) = 

Calculation:

f(x) = log √x

Differentiating with respect to x, we get

⇒ f'(x) = () 

⇒ f'(x) = ⋅ 

⇒ f'(x) = 

If f(x) = log x2, where x > 1 find derivative of f(x)

Answer (Detailed Solution Below)

Option 3 :

Logarithmic Function Question 11 Detailed Solution

Download Solution PDF

Concept:

Chain rule: 

If y = log x, then f'(x) = 1/x

And if y = xn, then f'(x) = nxn - 1

Calculation:

f(x) = log x2, x > 1

Differentiating with respect to x, we get

⇒ f'(x) = () 

⇒ f'(x) = 

⇒ f'(x) = 

If f(x) = log (sin x), find derivative of f(x)

  1. tan x
  2. sec x
  3. cosec x
  4. cot x

Answer (Detailed Solution Below)

Option 4 : cot x

Logarithmic Function Question 12 Detailed Solution

Download Solution PDF

Concept:

Chain rule: 

If y = log x, then f'(x) = 1/x

And if y = sin x, then f'(x) = cos x

Calculation:

f(x) = log (sin x)

Differentiating with respect to x, we get

⇒ f'(x) = () 

⇒ f'(x) = 

⇒ f'(x) = cot x

Differentiate {-log (log x), x > 1} with respect to x

  1. -1 / (x log x)
  2. 1 / (log x)
  3. 1 / x
  4. x log x

Answer (Detailed Solution Below)

Option 1 : -1 / (x log x)

Logarithmic Function Question 13 Detailed Solution

Download Solution PDF

Concept:

Chain rule: 

Calculation:

Here, -log (log x), x > 1

Let, log x = y 

Differentiating with respect to x, we get

⇒ dy/dx = 1/x        ....(1)

Now, -log (log x) = -log y

= -1 / (x log x)    ....(from (1))

Hence, option (1) is correct. 

If log 2 = 0.2614, log 3 = 0.3521, log 6 = ?

  1. 0.0920
  2. 0.6135
  3. 1.2614
  4. 1.3521

Answer (Detailed Solution Below)

Option 2 : 0.6135

Logarithmic Function Question 14 Detailed Solution

Download Solution PDF

Given the values:

log 2 = 0.2614

log 3 = 0.3521

Formula Used:

Using the logarithm property:

 

Calculation:

We can write as 6 = 2 x 3

Using the property:

log 6 = log 2 + log 3

Substituting the given values:

⇒ log 6 = 0.6135

Hence the value log 6 is 0.6135.

Therefore, the correct option is (2)

Logarithmic Function Question 15:

Find derivative of (x)log x with respect to x

  1. ​None of these

Answer (Detailed Solution Below)

Option 2 :

Logarithmic Function Question 15 Detailed Solution

Concept:

Formula:

log mn = n log m

Calculation:

Let y = xlog x

Taking log both sides, we get

⇒ log y = xlog x

⇒ log y = log x log  x            (∵ log mn = n log m)

Differentiating with respect to x, we get

⇒ 

⇒ 

⇒ 

⇒ 

Hot Links: teen patti stars teen patti joy mod apk teen patti master 51 bonus