Frequency Shifting MCQ Quiz - Objective Question with Answer for Frequency Shifting - Download Free PDF

Last updated on Apr 20, 2025

Latest Frequency Shifting MCQ Objective Questions

Frequency Shifting Question 1:

Inverse Fourier Transform of 2πδ(ωωo) is

  1. 2πejωot
  2. ejωot
  3. ejωot2π
  4. 2πejπt
  5. 2π ejωot

Answer (Detailed Solution Below)

Option 2 : ejωot

Frequency Shifting Question 1 Detailed Solution

Concept:

The inverse Fourier Transform is defined as:

x(t)=12π+X(ω)ejωtdω

Properties of delta function:

1) +δ(t)dt=1

2) +δ(tto)x(t)dt=x(to)

3) δ(at)=δ(t)|a|

4) δ(tto).x(t)=x(t0).δ(tto)

5) δ(t)=δ(t)

Calculation:

Given:

X(ω)=2πδ(ωωo)

The inverse Fourier Transform will be:

x(t)=12π+2πδ(ωωo)ejωtdω
Using Property (2) (Frequency shifting property) of delta signal, we get:

+δ(ωωo)ejωtdω=ejωot

x(t)=ejωot

Frequency Shifting Question 2:

Inverse Fourier Transform of 2πδ(ωωo) is

  1. 2πejωot
  2. ejωot
  3. ejωot2π
  4. 2πejπt

Answer (Detailed Solution Below)

Option 2 : ejωot

Frequency Shifting Question 2 Detailed Solution

Concept:

The inverse Fourier Transform is defined as:

x(t)=12π+X(ω)ejωtdω

Properties of delta function:

1) +δ(t)dt=1

2) +δ(tto)x(t)dt=x(to)

3) δ(at)=δ(t)|a|

4) δ(tto).x(t)=x(t0).δ(tto)

5) δ(t)=δ(t)

Calculation:

Given:

X(ω)=2πδ(ωωo)

The inverse Fourier Transform will be:

x(t)=12π+2πδ(ωωo)ejωtdω
Using Property (2) (Frequency shifting property) of delta signal, we get:

+δ(ωωo)ejωtdω=ejωot

x(t)=ejωot

Frequency Shifting Question 3:

In the figure, M(f) is the Fourier transform of the message signal m(t) where A = 100 Hz and B = 40 Hz. Given v(t) = cos (2πfct) and w(t) = cos (2π(fc + A)t), where fc > A. The cutoff frequencies of both the filters are fc.

F2 S.B Madhu 06.07.20 D7

The bandwidth of the signal at the output of the modulator (in Hz) is _______

Answer (Detailed Solution Below) 59.9 - 60.1

Frequency Shifting Question 3 Detailed Solution

Analysis:

F2 S.B Madhu 06.07.20 D8

v(t) = cos (2πfct), w(t) = cos [2π (fc + A)t]

From above block diagram, we can write:

x(t) = m(t) × v(t)

So. The frequency spectrum of x(t) will be:

F2 S.B Madhu 06.07.20 D9

Now, this signal passes through HPF having frequency fc. The resultant spectrum will be:

F2 S.B Madhu 06.07.20 D10

The output of the second multiplier will be:

z(t) = y(t) × w(t)

A time-domain multiplication is the frequency domain convolution, i.e.

F2 S.B Madhu 06.07.20 D11

After passing through the LPF centered at fc, the Fourier spectrum of output s(t) will be:

F2 S.B Madhu 06.07.20 D12

Now, the required Bandwidth (BW) will be:

BW = (A - B) – 0

= 100 – 40

= 60 Hz

Frequency Shifting Question 4:

Consider the system with x(t) as input and y(t) as output. The frequency-domain characteristics are shown in the figure. Which combination of A and B will give ‘y’ as a result?

F1 S.B Madhu 7.11.19 D 5

  1. F1 S.B Madhu 7.11.19 D 6
  2. F1 S.B Madhu 7.11.19 D 7
  3. F1 S.B Madhu 7.11.19 D 8
  4. F1 S.B Madhu 7.11.19 D 9

Answer (Detailed Solution Below)

Option 1 : F1 S.B Madhu 7.11.19 D 6

Frequency Shifting Question 4 Detailed Solution

Calculation:

Analyzing the circuit by taking each Option into consideration we proceed as follows:

First considering option (1)

i.e. if the Frequency Spectrum of A is as shown:

F1 S.B. Nita 14.11.2019 D 3

The output when the signal x(t) passes through A will simply be the multiplication of j in the frequency spectrum of x(t). The output signal spectrum from Block A will be, therefore:

F1 S.B. Nita 14.11.2019 D 4

When the above spectrum is multiplied with j (as seen in the circuit given), the output becomes;

F1 S.B. Nita 14.11.2019 D 5

When the above signal is then passed through a summer, the resultant spectrum will be as shown:

F1 S.B. Nita 14.11.2019 D 6

But given y(t) is a shifted spectrum of the above, and we know that;

If x(t) « X(f)

x(t). ejωot    X(f+fo)

i.e. when multiplied with a single negative frequency exponent, the spectrum is shifted to the left by f0.

If B = F1 S.B. Nita 14.11.2019 D 7

The output spectrum will be:

F1 S.B. Nita 14.11.2019 D 8

So Option (1) shows the Correct representation of A and B.

Frequency Shifting Question 5:

If the Fourier transform of x(t) is 5ωcos(πω) then what is the Fourier transform of ej6t x(t).

  1. 5ω6cos{π(ω6)}
  2. 5ω+6cos{π(ω+6)}
  3. (ω6)5ωcos[π(ω6)]
  4. 5ω+6cos(πω)

Answer (Detailed Solution Below)

Option 1 : 5ω6cos{π(ω6)}

Frequency Shifting Question 5 Detailed Solution

x(t)F.T5ωcos(πω)

By frequency shifting properties.

x(t)F.Tx(ω)x(t).ejω0tF.Tx(ωω0)ej6tx(t)F.T5ω6cos{π(ω6)}  

Top Frequency Shifting MCQ Objective Questions

Consider the signal x(t) = cos(6πt) + sin(8πt), where t is in seconds. The Nyquist sampling rate (in samples/second) for the signal y(t) = x(2t + 5) is

  1. 8
  2. 12
  3. 16
  4. 32

Answer (Detailed Solution Below)

Option 3 : 16

Frequency Shifting Question 6 Detailed Solution

Download Solution PDF

Given,

x(t) = cos(6πt) + sin(8πt)

The bandwidth of the signal will be:

8π2π=4 Hz

Now, y(t) = x(2t + 5) can be written as:

y(t)=x(2(t+52))

Taking the Fourier transform, we get:

Y(jω)=1|2|X(jω2)ej5ω2

Y(jω)=12X(jω2)ej5ω2

Thus, the frequency spectrum of X(jω)  expands by 2.

This will make the highest frequency component of Y(jω) as:

2× 4 = 8 Hz 

Hence, the Nyquist rate will be:

fs = 2 × 8 = 16 samples/sec

In the figure, M(f) is the Fourier transform of the message signal m(t) where A = 100 Hz and B = 40 Hz. Given v(t) = cos (2πfct) and w(t) = cos (2π(fc + A)t), where fc > A. The cutoff frequencies of both the filters are fc.

F2 S.B Madhu 06.07.20 D7

The bandwidth of the signal at the output of the modulator (in Hz) is _______

Answer (Detailed Solution Below) 59.9 - 60.1

Frequency Shifting Question 7 Detailed Solution

Download Solution PDF

Analysis:

F2 S.B Madhu 06.07.20 D8

v(t) = cos (2πfct), w(t) = cos [2π (fc + A)t]

From above block diagram, we can write:

x(t) = m(t) × v(t)

So. The frequency spectrum of x(t) will be:

F2 S.B Madhu 06.07.20 D9

Now, this signal passes through HPF having frequency fc. The resultant spectrum will be:

F2 S.B Madhu 06.07.20 D10

The output of the second multiplier will be:

z(t) = y(t) × w(t)

A time-domain multiplication is the frequency domain convolution, i.e.

F2 S.B Madhu 06.07.20 D11

After passing through the LPF centered at fc, the Fourier spectrum of output s(t) will be:

F2 S.B Madhu 06.07.20 D12

Now, the required Bandwidth (BW) will be:

BW = (A - B) – 0

= 100 – 40

= 60 Hz

Consider the system with x(t) as input and y(t) as output. The frequency-domain characteristics are shown in the figure. Which combination of A and B will give ‘y’ as a result?

F1 S.B Madhu 7.11.19 D 5

  1. F1 S.B Madhu 7.11.19 D 6
  2. F1 S.B Madhu 7.11.19 D 7
  3. F1 S.B Madhu 7.11.19 D 8
  4. F1 S.B Madhu 7.11.19 D 9

Answer (Detailed Solution Below)

Option 1 : F1 S.B Madhu 7.11.19 D 6

Frequency Shifting Question 8 Detailed Solution

Download Solution PDF

Calculation:

Analyzing the circuit by taking each Option into consideration we proceed as follows:

First considering option (1)

i.e. if the Frequency Spectrum of A is as shown:

F1 S.B. Nita 14.11.2019 D 3

The output when the signal x(t) passes through A will simply be the multiplication of j in the frequency spectrum of x(t). The output signal spectrum from Block A will be, therefore:

F1 S.B. Nita 14.11.2019 D 4

When the above spectrum is multiplied with j (as seen in the circuit given), the output becomes;

F1 S.B. Nita 14.11.2019 D 5

When the above signal is then passed through a summer, the resultant spectrum will be as shown:

F1 S.B. Nita 14.11.2019 D 6

But given y(t) is a shifted spectrum of the above, and we know that;

If x(t) « X(f)

x(t). ejωot    X(f+fo)

i.e. when multiplied with a single negative frequency exponent, the spectrum is shifted to the left by f0.

If B = F1 S.B. Nita 14.11.2019 D 7

The output spectrum will be:

F1 S.B. Nita 14.11.2019 D 8

So Option (1) shows the Correct representation of A and B.

Frequency Shifting Question 9:

Consider the signal x(t) = cos(6πt) + sin(8πt), where t is in seconds. The Nyquist sampling rate (in samples/second) for the signal y(t) = x(2t + 5) is

  1. 8
  2. 12
  3. 16
  4. 32

Answer (Detailed Solution Below)

Option 3 : 16

Frequency Shifting Question 9 Detailed Solution

Given,

x(t) = cos(6πt) + sin(8πt)

The bandwidth of the signal will be:

8π2π=4 Hz

Now, y(t) = x(2t + 5) can be written as:

y(t)=x(2(t+52))

Taking the Fourier transform, we get:

Y(jω)=1|2|X(jω2)ej5ω2

Y(jω)=12X(jω2)ej5ω2

Thus, the frequency spectrum of X(jω)  expands by 2.

This will make the highest frequency component of Y(jω) as:

2× 4 = 8 Hz 

Hence, the Nyquist rate will be:

fs = 2 × 8 = 16 samples/sec

Frequency Shifting Question 10:

Inverse Fourier Transform of 2πδ(ωωo) is

  1. 2πejωot
  2. ejωot
  3. ejωot2π
  4. 2πejπt

Answer (Detailed Solution Below)

Option 2 : ejωot

Frequency Shifting Question 10 Detailed Solution

Concept:

The inverse Fourier Transform is defined as:

x(t)=12π+X(ω)ejωtdω

Properties of delta function:

1) +δ(t)dt=1

2) +δ(tto)x(t)dt=x(to)

3) δ(at)=δ(t)|a|

4) δ(tto).x(t)=x(t0).δ(tto)

5) δ(t)=δ(t)

Calculation:

Given:

X(ω)=2πδ(ωωo)

The inverse Fourier Transform will be:

x(t)=12π+2πδ(ωωo)ejωtdω
Using Property (2) (Frequency shifting property) of delta signal, we get:

+δ(ωωo)ejωtdω=ejωot

x(t)=ejωot

Frequency Shifting Question 11:

Inverse Fourier Transform of 2πδ(ωωo) is

  1. 2πejωot
  2. ejωot
  3. ejωot2π
  4. 2πejπt
  5. 2π ejωot

Answer (Detailed Solution Below)

Option 2 : ejωot

Frequency Shifting Question 11 Detailed Solution

Concept:

The inverse Fourier Transform is defined as:

x(t)=12π+X(ω)ejωtdω

Properties of delta function:

1) +δ(t)dt=1

2) +δ(tto)x(t)dt=x(to)

3) δ(at)=δ(t)|a|

4) δ(tto).x(t)=x(t0).δ(tto)

5) δ(t)=δ(t)

Calculation:

Given:

X(ω)=2πδ(ωωo)

The inverse Fourier Transform will be:

x(t)=12π+2πδ(ωωo)ejωtdω
Using Property (2) (Frequency shifting property) of delta signal, we get:

+δ(ωωo)ejωtdω=ejωot

x(t)=ejωot

Frequency Shifting Question 12:

In the figure, M(f) is the Fourier transform of the message signal m(t) where A = 100 Hz and B = 40 Hz. Given v(t) = cos (2πfct) and w(t) = cos (2π(fc + A)t), where fc > A. The cutoff frequencies of both the filters are fc.

F2 S.B Madhu 06.07.20 D7

The bandwidth of the signal at the output of the modulator (in Hz) is _______

Answer (Detailed Solution Below) 59.9 - 60.1

Frequency Shifting Question 12 Detailed Solution

Analysis:

F2 S.B Madhu 06.07.20 D8

v(t) = cos (2πfct), w(t) = cos [2π (fc + A)t]

From above block diagram, we can write:

x(t) = m(t) × v(t)

So. The frequency spectrum of x(t) will be:

F2 S.B Madhu 06.07.20 D9

Now, this signal passes through HPF having frequency fc. The resultant spectrum will be:

F2 S.B Madhu 06.07.20 D10

The output of the second multiplier will be:

z(t) = y(t) × w(t)

A time-domain multiplication is the frequency domain convolution, i.e.

F2 S.B Madhu 06.07.20 D11

After passing through the LPF centered at fc, the Fourier spectrum of output s(t) will be:

F2 S.B Madhu 06.07.20 D12

Now, the required Bandwidth (BW) will be:

BW = (A - B) – 0

= 100 – 40

= 60 Hz

Frequency Shifting Question 13:

Consider the system with x(t) as input and y(t) as output. The frequency-domain characteristics are shown in the figure. Which combination of A and B will give ‘y’ as a result?

F1 S.B Madhu 7.11.19 D 5

  1. F1 S.B Madhu 7.11.19 D 6
  2. F1 S.B Madhu 7.11.19 D 7
  3. F1 S.B Madhu 7.11.19 D 8
  4. F1 S.B Madhu 7.11.19 D 9

Answer (Detailed Solution Below)

Option 1 : F1 S.B Madhu 7.11.19 D 6

Frequency Shifting Question 13 Detailed Solution

Calculation:

Analyzing the circuit by taking each Option into consideration we proceed as follows:

First considering option (1)

i.e. if the Frequency Spectrum of A is as shown:

F1 S.B. Nita 14.11.2019 D 3

The output when the signal x(t) passes through A will simply be the multiplication of j in the frequency spectrum of x(t). The output signal spectrum from Block A will be, therefore:

F1 S.B. Nita 14.11.2019 D 4

When the above spectrum is multiplied with j (as seen in the circuit given), the output becomes;

F1 S.B. Nita 14.11.2019 D 5

When the above signal is then passed through a summer, the resultant spectrum will be as shown:

F1 S.B. Nita 14.11.2019 D 6

But given y(t) is a shifted spectrum of the above, and we know that;

If x(t) « X(f)

x(t). ejωot    X(f+fo)

i.e. when multiplied with a single negative frequency exponent, the spectrum is shifted to the left by f0.

If B = F1 S.B. Nita 14.11.2019 D 7

The output spectrum will be:

F1 S.B. Nita 14.11.2019 D 8

So Option (1) shows the Correct representation of A and B.

Frequency Shifting Question 14:

The continuous-time signal x(t)=1a2+t2 has the Fourier transform π/a exp(-a|ω|). The signal x(t) cos bt has Fourier transform

  1. π2a[exp(a|ωb|)+exp(a|ω+b|)]
  2. π2a[exp(a|ω|)+exp(a|ω|)]
  3. πa[exp(a|ω|)cosbω]
  4. π2a[exp(a|ωb|)exp(a|ω+b|)]

Answer (Detailed Solution Below)

Option 1 : π2a[exp(a|ωb|)+exp(a|ω+b|)]

Frequency Shifting Question 14 Detailed Solution

x(t)=1a2+t2 

Given, x(ω)=πaea|ω|

We know that cosbt=ejbt+ejbt2

then, x(t)cosbt=12[x(t)ejbt+x(t)ejbt]

x(ω)=πaea|ω| 

By using frequency shifting

x(t)ejω0tx(ωω0) 

x(t)cosbt12πa[ea|ωb|+ea|ω+b|] 

Fourier transform of x(t)cosbt=π2a[ea|ωb|+ea|ω+b|]

Frequency Shifting Question 15:

The input signal x(t) = 4 + cos (4πt) - sin (8πt) is passed through a filter with impulse response h(t) = sinc2(t) cos (16 πt). Then the output is

  1. 0
  2. 4 + cos (4πt) - sin (8πt)
  3. cos 4πt
  4. -sin (8πt)

Answer (Detailed Solution Below)

Option 1 : 0

Frequency Shifting Question 15 Detailed Solution

x(t) = 4 + cos (4πt) - sin (8πt)

f1=0,f2=4π2π=2Hz,f3=8π2π=4Hz 

Sinc2(t) ↔ Tri(f)

Using frequency shifting property,

H(f)=Tri(f8)+Tri(f+8)2 

GATE EE Signals Systems 2 3 1

No input frequencies are passed through filter.
Get Free Access Now
Hot Links: teen patti 500 bonus teen patti customer care number teen patti master list teen patti yas