Chord of Contact MCQ Quiz - Objective Question with Answer for Chord of Contact - Download Free PDF

Last updated on Apr 6, 2025

Latest Chord of Contact MCQ Objective Questions

Chord of Contact Question 1:

If the circle x2 + y2 = a2 cuts off a chord of length 2b from the line y = mx + c, then

  1. (1 - m2) (a2 + b2) = c2
  2. (1 + m2) (a2 - b2) = c2
  3. (1 - m2) (a2 - b2) = c2
  4. None of these

Answer (Detailed Solution Below)

Option 2 : (1 + m2) (a2 - b2) = c2

Chord of Contact Question 1 Detailed Solution

For the intersection of the circle x2 + y2 = a2 and the line y = mx + c

 ⇒ x 2 + (mx + c)2 = a2 

⇒ (1 + m2)x2 + 2mcx + c2 - a2 = 0

Let x1 and x2 be the roots of this equation,

⇒ (x1 - x2)2 = (x1 + x2)2 - 4x1x2

⇒ (x1 - x2)2 =  __(1)

And since y = mx + c

⇒ y1 - y= m(x1 - x2) __(2)

⇒ The length of the chord = 

Putting the value of (2),

⇒ 2b = 

⇒ 

Putting the value of (1),

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

∴ The correct answer is option (2).

Chord of Contact Question 2:

The length of common chord of the circles (x - a)2 + y2 = a2 and x2 + (y - b)2 = b2 is

  1. None of these

Answer (Detailed Solution Below)

Option 3 :

Chord of Contact Question 2 Detailed Solution

Given circles, (x - a)2 + y2 = a2 and x2 + (y - b)2 = b2 

⇒ x2 - 2ax + y2 = 0 and x+ y2 - 2by = 0 

Intersection of circles 

⇒ ax = by

⇒ 

⇒ y = 0,  and x = 0, 

So points of intersection are (0,0) and ()

The common chord will be the chord passing through these two points

⇒ The length of common chord = 

⇒ The length of common chord = 

∴ The correct answer is option (3).

Top Chord of Contact MCQ Objective Questions

Chord of Contact Question 3:

The length of common chord of the circles (x - a)2 + y2 = a2 and x2 + (y - b)2 = b2 is

  1. None of these

Answer (Detailed Solution Below)

Option 3 :

Chord of Contact Question 3 Detailed Solution

Given circles, (x - a)2 + y2 = a2 and x2 + (y - b)2 = b2 

⇒ x2 - 2ax + y2 = 0 and x+ y2 - 2by = 0 

Intersection of circles 

⇒ ax = by

⇒ 

⇒ y = 0,  and x = 0, 

So points of intersection are (0,0) and ()

The common chord will be the chord passing through these two points

⇒ The length of common chord = 

⇒ The length of common chord = 

∴ The correct answer is option (3).

Chord of Contact Question 4:

If the circle x2 + y2 = a2 cuts off a chord of length 2b from the line y = mx + c, then

  1. (1 - m2) (a2 + b2) = c2
  2. (1 + m2) (a2 - b2) = c2
  3. (1 - m2) (a2 - b2) = c2
  4. None of these

Answer (Detailed Solution Below)

Option 2 : (1 + m2) (a2 - b2) = c2

Chord of Contact Question 4 Detailed Solution

For the intersection of the circle x2 + y2 = a2 and the line y = mx + c

 ⇒ x 2 + (mx + c)2 = a2 

⇒ (1 + m2)x2 + 2mcx + c2 - a2 = 0

Let x1 and x2 be the roots of this equation,

⇒ (x1 - x2)2 = (x1 + x2)2 - 4x1x2

⇒ (x1 - x2)2 =  __(1)

And since y = mx + c

⇒ y1 - y= m(x1 - x2) __(2)

⇒ The length of the chord = 

Putting the value of (2),

⇒ 2b = 

⇒ 

Putting the value of (1),

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

∴ The correct answer is option (2).

Chord of Contact Question 5:

The points of intersection of the line ax + by = 0, (a ≠ b) and the circle x2 + y2 - 2x = 0 are A(α, 0) and B(1, β). The image of the circle with AB as a diameter in the line x + y + 2 = 0 is : 

  1. x2 + y2 + 5x + 5y + 12 = 0
  2. x2 + y2 + 3x + 5y + 12 = 0
  3. x2 + y2 + 3x + 3y + 12 = 0
  4. x2 + y2 - 5x - 5y + 12 = 0

Answer (Detailed Solution Below)

Option 1 : x2 + y2 + 5x + 5y + 12 = 0

Chord of Contact Question 5 Detailed Solution

Calculation: 

Given the line (with and the circle

Their intersection points are and

Substitute into the circle: , so (since ). Thus

Now set in the circle: Since , we take , so

Circle with diameter has centre and radius

Its equation is

Reflect the centre across the line The signed distance factor is so the image centre is

The radius remains Hence the reflected circle is

Hence, the correct answer is Option 1.

Hot Links: teen patti master purana teen patti sweet teen patti master list